首页> 外文OA文献 >Multi-scale laboratory evaluation of the physical, mechanical, and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue
【2h】

Multi-scale laboratory evaluation of the physical, mechanical, and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue

机译:用电石渣稳定的软弱公路路基土的物理,力学和微结构特性的多尺度实验室评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Calcium carbide residue (CCR) is an industrial by-product, stockpiles of which are rapidly accumulating worldwide. Highway embankment construction has been identified as an avenue to consume huge quantities of CCR as an economical, less energy intensive, and environmentally friendly chemical additive for soil stabilization. Previous studies have investigated the mechanical behavior of soils stabilized by CCR or blends of CCR with other additives; however, interpretation of the macroscale geomechanical behavior of CCR-stabilized soft soils from a systematically microstructural observation and analysis is relatively unknown. This paper presents a multi-scale laboratory investigation on the physical, mechanical, and microstructural properties of CCR-stabilized clayey soils with comparison to quicklime-stabilized soils. Several series of tests were conducted to examine the Atterberg limits, particle-size distribution, compaction characteristics, unconfined compressive strength, California Bearing Ratio, and resilient modulus of the CCR-stabilized clayey soils. The influences of binder content, curing time, and initial compaction state on the physical and mechanical properties of treated soils are interpreted with the aids of physicochemical and microstructural observations including soil pH, soil mineralogy obtained from X-ray diffraction and thermogravimetric analysis, and pore-size distribution obtained from mercury intrusion porosimetry. Soil particle flocculation and agglomeration at the early stage and pozzolanic reactions during the entire curing time, which originate from the finer particle size, greater specific surface area, and higher pH value of CCR, are the controlling mechanisms for the superior mechanical performance of CCR-stabilized soils. The outcomes of this research will contribute to the usage of CCR as a sustainable and alternative stabilizer to quicklime in highway embankment applications.
机译:碳化钙残留物(CCR)是一种工业副产品,其库存在世界范围内迅速积累。公路路堤的建设已被确认为消耗大量CCR的途径,CCR是一种经济,耗能少且环保的化学添加剂,可用于土壤稳定。以前的研究已经研究了用CCR或CCR与其他添加剂共混稳定的土壤的力学性能。然而,从系统的微观结构观察和分析来解释CCR稳定的软土的宏观地质力学行为是相对未知的。本文介绍了对CCR稳定的黏土的物理,机械和微观结构特性的多尺度实验室研究,并将其与生石灰稳定的土进行了比较。进行了一系列测试,以检查CCR稳定的黏土的Atterberg极限,粒径分布,压实特性,无侧限抗压强度,California承载比和弹性模量。通过理化和微观结构观察,包括土壤pH,X射线衍射和热重分析获得的土壤矿物学以及孔隙,通过理化和微观结构观察来解释粘合剂含量,固化时间和初始压实状态对处理过的土壤的影响。压汞法测得的粒度分布。 CCR的优异机械性能的控制机制是土壤颗粒的早期絮凝和团聚以及整个固化过程中的火山灰反应,这是由于CCR的粒径较小,比表面积较大和pH值较高所致。稳定的土壤。这项研究的结果将有助于使用CCR作为可持续的替代稳定剂来生石灰在高速公路路堤中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号